Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

San-Hui Liu, Yi-Zhi Li* and Qing-Jin Meng

Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210093, People's Republic of China

Correspondence e-mail: Ilyyjz@nju.edu.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.012 \AA$
R factor $=0.062$
$w R$ factor $=0.156$
Data-to-parameter ratio $=13.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

catena-Poly[[[diaqua(6-carboxypyridine-2-carboxylato- $\left.{ }^{3} N, O, O^{\prime}\right)$ samarium(III)]-μ-pyridine-2,6-dicarboxylato- $\left.\kappa^{4} N, O, O^{\prime}: O^{\prime \prime}\right]$ tetrahydrate]

In the title complex, $\left[\mathrm{Sm}\left(\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{O}_{4}\right)\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{O}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$, the coordination number of the Sm atom is nine. The pyridine-2,6-dicarboxylate ligand chelates to the Sm atom and bridges to the neighbouring Sm atoms to form infinite chains along the c axis.

Comment

In recent years, the use of lanthanide elements for constructing metal-organic framework (MOF) structures has attracted a lot of interest due to their high coordination numbers, along with special magnetic and luminescent properties (Benelli \& Gatteschi, 2002; Ghosh \& Bharadwaj, 2003). A search of the Cambridge Structural Database (February 2005 update; Allen, 2002) for pyridine-2,6-dicarboxylic acid $\left(\mathrm{pydcH}_{2}\right)$ or the deprotonated ligand $\left(\mathrm{pydcH}^{-1}\right.$ or $\left.\mathrm{pydc}^{2-}\right)$ coordinated to samarium yielded only five hits. The title compound, (I), which is a novel linear coordination polymer of samarium with pyridine-2,6-dicarboxylate ligands, is reported here.

(I)

The asymmetric unit of (I) is composed of one $\mathrm{Sm}^{\mathrm{III}}$ ion, one PydcH^{-1} and one Pydc^{2-} ligand, two coordinated water molecules and four water molecules of crystallization. Atom Sm 1 is coordinated by pydcH^{-}(atoms $\mathrm{O} 1, \mathrm{~N} 1$ and O 3), pydc ${ }^{2-}$ (O6, N2 and O7), and two aqua ligands (O9 and O10); the Sm atom is also bonded to one bridging atom, $\mathrm{O} 5^{\mathrm{iii}}$ [symmetry code: (iii) $x, y, z-1$], from a neighbouring pydc ${ }^{2-}$ ligand, giving an overall nine-coordination (Fig. 1). The pydc ${ }^{2-}$ group chelates to the Sm1 atom and bridges to the neighbouring $\mathrm{Sm} 1^{\mathrm{i}}$ atom [symmetry code: (i) $x, \frac{3}{2}-y, z+\frac{1}{2}$], forming an infinite chain along the c axis (Fig. 2). Two neighbouring chains are linked to form a ladder-like band through O $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2 and Fig. 3). The ladder-like

Figure 1
The structure of (I), with displacement ellipsoids drawn at the 50% probability level. All H atoms and uncoordinated water molecules have been omitted for clarity. [Symmetry codes: (i) $x, \frac{3}{2}-y, z+\frac{1}{2}$; (ii) $x, \frac{3}{2}-y$, $z-\frac{1}{2}$.]
bands form a layer structure parallel to (100) by hydrogen bonds with the uncoordinated water molecules, and adjacent layers are linked together through hydrogen bonds, resulting in a three-dimensional framework.

Experimental

$\mathrm{Sm}_{2} \mathrm{O}_{3}$ was acquired from Aldrich, and pyridine-2,6-dicarboxylic acid was synthesized according to the literature (Singer \& McElvain, 1935). To a solution of pyridine-2,6-dicarboxylic acid (167 mg , $1 \mathrm{mmol})$ in water $(60 \mathrm{ml})$ and sodium hydroxide ($1 \mathrm{M}, 2 \mathrm{ml}$), $\mathrm{Sm}_{2} \mathrm{O}_{3}$ ($349 \mathrm{mg}, 1 \mathrm{mmol}$) was added. The mixture was stirred at 373 K for 12 h and then filtered. Single crystals of (I) suitable for X-ray analysis were grown from the filtrate after six weeks (yield 65%). Compound (I) is stable in air and soluble in water.

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{10} \mathrm{Sm} \cdot 4 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=589.66$
Monoclinic, $P 2_{\mathrm{a}_{1}} / c$
$a=13.973$ (3) A
$b=11.203$ (2) \AA
$c=12.830(3) \AA$
$\beta=102.367$ (4) ${ }^{\circ}$
$V=1961.8(7) \AA^{3}$
$Z=4$

Data collection

Bruker SMART APEX CCD area-
\quad detector diffractometer
φ and ω scans
Absorption correction: multi-scan
$\quad(S A D A B S ;$ Bruker, 2000$)$
$\quad T_{\min }=0.61, T_{\max }=0.69$
10285 measured reflections
$D_{x}=1.996 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 935
\quad reflections
$\theta=2.4-25.6^{\circ}$
$\mu=3.07 \mathrm{~mm}^{-1}$
$T=293(2) \mathrm{K}$
Prism, colourless
$0.20 \times 0.14 \times 0.12 \mathrm{~mm}$

3846 independent reflections
2849 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.044$
$\theta_{\max }=26.0^{\circ}$
$h=-16 \rightarrow 17$
$k=-13 \rightarrow 13$
$l=-13 \rightarrow 15$

Figure 2
The infinite chain along the c axis. [Symmetry codes: (i) $x, \frac{3}{2}-y, z+\frac{1}{2}$; (ii) $x, \frac{3}{2}-y, z-\frac{1}{2}$; (iii) $x, y, z-1$.]

The crystal packing of (I), viewed down the b axis. Dashed lines indicate hydrogen bonds.

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.062$
$w R\left(F^{2}\right)=0.156$
$S=1.06$
3846 reflections
280 parameters
H -atom parameters constrained
Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

Sm1-O9	2.388 (5)	Sm1-O6	2.524 (6)
Sm1-O10	2.423 (6)	Sm1-N2	2.537 (8)
Sm1-O3	2.426 (6)	Sm1-O1	2.537 (6)
Sm1-O5 ${ }^{\text {i }}$	2.446 (6)	Sm1-N1	2.556 (7)
Sm1-O7	2.476 (6)		
O9-Sm1-O10	141.5 (2)	$\mathrm{O} 5^{\mathrm{i}}-\mathrm{Sm} 1-\mathrm{N} 2$	128.9 (2)
O9-Sm1-O3	79.90 (19)	O7-Sm1-N2	62.3 (2)
O10-Sm1-O3	97.26 (19)	O6-Sm1-N2	62.5 (2)
$\mathrm{O} 9-\mathrm{Sm} 1-\mathrm{O}^{\text {i }}$	71.6 (2)	O9-Sm1-O1	141.0 (2)
O10-Sm1-O5 ${ }^{\text {i }}$	70.7 (2)	O10-Sm1-O1	71.2 (2)
$\mathrm{O} 3-\mathrm{Sm} 1-\mathrm{O} 5^{\text {i }}$	74.65 (19)	O3-Sm1-O1	124.7 (2)
O9-Sm1-O7	86.04 (18)	$\mathrm{O} 5^{\mathrm{i}}-\mathrm{Sm} 1-\mathrm{O} 1$	139.1 (2)
O10-Sm1-O7	78.56 (19)	O7-Sm1-O1	81.21 (18)
$\mathrm{O} 3-\mathrm{Sm} 1-\mathrm{O} 7$	151.38 (19)	O6-Sm1-O1	84.23 (19)
$\mathrm{O} 5^{\mathrm{i}}-\mathrm{Sm} 1-\mathrm{O} 7$	77.3 (2)	$\mathrm{N} 2-\mathrm{Sm} 1-\mathrm{O} 1$	65.8 (2)
O9-Sm1-O6	72.88 (19)	O9-Sm1-N1	133.5 (2)
O10-Sm1-O6	143.9 (2)	$\mathrm{O} 10-\mathrm{Sm} 1-\mathrm{N} 1$	73.3 (2)
O3-Sm1-O6	75.08 (19)	O3-Sm1-N1	62.4 (2)
O5 ${ }^{\mathrm{i}}-\mathrm{Sm} 1-\mathrm{O} 6$	136.45 (19)	$\mathrm{O} 5^{\mathrm{i}}-\mathrm{Sm} 1-\mathrm{N} 1$	118.5 (2)
O7-Sm1-O6	124.2 (2)	O7-Sm1-N1	139.4 (2)
O9-Sm1-N2	75.5 (2)	O6-Sm1-N1	72.0 (2)
$\mathrm{O} 10-\mathrm{Sm} 1-\mathrm{N} 2$	124.8 (2)	N2-Sm1-N1	112.5 (2)
$\mathrm{O} 3-\mathrm{Sm} 1-\mathrm{N} 2$	135.5 (2)	$\mathrm{O} 1-\mathrm{Sm} 1-\mathrm{N} 1$	62.4 (2)

Symmetry code: (i) $x, \frac{3}{2}-y, z-\frac{1}{2}$.

metal-organic papers

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2-\mathrm{H} 2 A \cdots \mathrm{O} 3^{\text {ii }}$	0.96	2.60	3.515 (9)	161
$\mathrm{O} 9-\mathrm{H} 94 \cdots \mathrm{O} 12$	0.96	2.50	3.295 (8)	140
$\mathrm{O} 9-\mathrm{H} 9 \mathrm{C} \cdots \mathrm{O} 14^{\text {iii }}$	0.96	2.03	2.720 (7)	127
$\mathrm{O} 10-\mathrm{H} 10 \mathrm{~A} \cdots \mathrm{O}^{\text {i }}$	0.85	2.13	2.707 (8)	125
O10-H10C... O_{1}	0.85	2.48	2.889 (8)	111
$\mathrm{O} 10-\mathrm{H} 10 \mathrm{C} \cdots \mathrm{O} 4^{\text {ii }}$	0.85	2.01	2.720 (9)	141
O11-H11B . . ${ }^{\text {7 } 7}$	0.85	2.08	2.912 (8)	164
$\mathrm{O} 12-\mathrm{H} 12 A \cdots \mathrm{O} 14^{\text {iv }}$	0.85	2.39	3.004 (9)	130
$\mathrm{O} 12-\mathrm{H} 12 \mathrm{~B} \cdots \mathrm{O} 3$	0.85	2.52	2.945 (8)	112
O12-H12B $\cdots \mathrm{O} 13$	0.85	2.07	2.775 (8)	140
$\mathrm{O} 13-\mathrm{H} 13 B \cdots \mathrm{O} 4$	0.85	1.87	2.642 (8)	150
O14-H14B $\cdots \mathrm{O}^{\text {v }}$	0.95	1.73	2.683 (8)	176
O14-H14C...O11 ${ }^{\text {v }}$	0.86	2.17	2.895 (8)	142

Symmetry codes: (i) $x, \frac{3}{2}-y, z-\frac{1}{2}$; (ii) $1-x, \frac{1}{2}+y, \frac{1}{2}-z$; (iii) $2-x, \frac{1}{2}+y, \frac{1}{2}-z$; (iv) $x, \frac{1}{2}-y, \frac{1}{2}+z$; (v) $x, y-1, z$.

O-bound H atoms were located from difference density maps ($\mathrm{O}-$ $\mathrm{H}=0.85-0.96 \AA$) and C -bound H atoms were positioned geome-
trically $(\mathrm{C}-\mathrm{H}=0.93 \AA)$. All H atoms were refined as riding, with isotropic displacement parameters 1.2 times the $U_{\text {eq }}$ value of the parent atom. The maximum and minimum electron-density peaks are located 1.17 and $0.55 \AA$, respectively, from atom Sm 1 .

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

This work was supported by the Nanjing University Talent Development Foundation (grant No. 0205005122).

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Benelli, C. \& Gatteschi, D. (2002). Chem. Rev. 102, 2369-2387.
Bruker (2000). SMART (Version 5.625), SAINT (Version 6.01), SHELXTL (Version 6.10) and $S A D A B S$ (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.
Ghosh, S. K. \& Bharadwaj, P. K. (2003). Inorg. Chem. 42, 8250-8254.
Singer, A. W. \& McElvain, S. M. (1935). J. Am. Chem. Soc. 57, 1135-1137.

