Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

San-Hui Liu, Yi-Zhi Li* and Qing-Jin Meng

Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210093, People's Republic of China

Correspondence e-mail: llyyjz@nju.edu.cn

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.012 Å R factor = 0.062 wR factor = 0.156 Data-to-parameter ratio = 13.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

catena-Poly[[[diaqua(6-carboxypyridine-2-carboxylato- $\kappa^3 N$,O,O')samarium(III)]- μ -pyridine-2,6-dicarboxylato- $\kappa^4 N$,O,O':O''] tetrahydrate]

In the title complex, $[Sm(C_7H_3O_4)(C_7H_4O_4)(H_2O)_2]\cdot 4H_2O$, the coordination number of the Sm atom is nine. The pyridine-2,6-dicarboxylate ligand chelates to the Sm atom and bridges to the neighbouring Sm atoms to form infinite chains along the *c* axis.

Received 7 April 2005 Accepted 22 April 2005 Online 14 May 2005

Comment

In recent years, the use of lanthanide elements for constructing metal–organic framework (MOF) structures has attracted a lot of interest due to their high coordination numbers, along with special magnetic and luminescent properties (Benelli & Gatteschi, 2002; Ghosh & Bharadwaj, 2003). A search of the Cambridge Structural Database (February 2005 update; Allen, 2002) for pyridine-2,6-dicarboxylic acid (pydcH₂) or the deprotonated ligand (pydcH⁻¹ or pydc^{2–}) coordinated to samarium yielded only five hits. The title compound, (I), which is a novel linear coordination polymer of samarium with pyridine-2,6-dicarboxylate ligands, is reported here.

The asymmetric unit of (I) is composed of one Sm^{III} ion, one PydcH⁻¹ and one Pydc²⁻ ligand, two coordinated water molecules and four water molecules of crystallization. Atom Sm1 is coordinated by pydcH⁻ (atoms O1, N1 and O3), pydc²⁻ (O6, N2 and O7), and two aqua ligands (O9 and O10); the Sm atom is also bonded to one bridging atom, O5ⁱⁱⁱ [symmetry code: (iii) x, y, z - 1], from a neighbouring pydc²⁻ ligand, giving an overall nine-coordination (Fig. 1). The pydc²⁻ group chelates to the Sm1 atom and bridges to the neighbouring Sm1ⁱ atom [symmetry code: (i) x, $\frac{3}{2} - y$, $z + \frac{1}{2}$], forming an infinite chain along the *c* axis (Fig. 2). Two neighbouring chains are linked to form a ladder-like band through O– H···O hydrogen bonds (Table 2 and Fig. 3). The ladder-like

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

The structure of (I), with displacement ellipsoids drawn at the 50% probability level. All H atoms and uncoordinated water molecules have been omitted for clarity. [Symmetry codes: (i) $x, \frac{3}{2} - y, z + \frac{1}{2}$; (ii) $x, \frac{3}{2} - y, z - \frac{1}{2}$.]

bands form a layer structure parallel to (100) by hydrogen bonds with the uncoordinated water molecules, and adjacent layers are linked together through hydrogen bonds, resulting in a three-dimensional framework.

Experimental

 Sm_2O_3 was acquired from Aldrich, and pyridine-2,6-dicarboxylic acid was synthesized according to the literature (Singer & McElvain, 1935). To a solution of pyridine-2,6-dicarboxylic acid (167 mg, 1 mmol) in water (60 ml) and sodium hydroxide (1 *M*, 2 ml), Sm_2O_3 (349 mg, 1 mmol) was added. The mixture was stirred at 373 K for 12 h and then filtered. Single crystals of (I) suitable for X-ray analysis were grown from the filtrate after six weeks (yield 65%). Compound (I) is stable in air and soluble in water.

Crystal data

$C_{14}H_{11}N_2O_{10}\text{Sm}\cdot4\text{H}_2\text{O}$ $M_r = 589.66$ Monoclinic, $P2_1/c$ a = 13.973 (3) Å b = 11.203 (2) Å c = 12.830 (3) Å $\beta = 102.367$ (4)° V = 1961.8 (7) Å ³	$D_x = 1.996 \text{ Mg m}^{-3}$ Mo K\alpha radiation Cell parameters from 935 reflections $\theta = 2.4-25.6^{\circ}$ $\mu = 3.07 \text{ mm}^{-1}$ T = 293 (2) K Prism, colourless $0.20 \times 0.14 \times 0.12 \text{ mm}$
Z = 4	$0.20 \times 0.14 \times 0.12 \text{ mm}$
Data collection	
Bruker SMART APEX CCD area-	3846 independent reflections
detector diffractometer	2849 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{\rm int} = 0.044$
Absorption correction: multi-scan	$\theta_{\rm max} = 26.0^{\circ}$
(SADABS; Bruker, 2000)	$h = -16 \rightarrow 17$
$T_{\min} = 0.61, \ T_{\max} = 0.69$	$k = -13 \rightarrow 13$
10 285 measured reflections	$l = -13 \rightarrow 15$

Figure 2 The infinite chain along the *c* axis. [Symmetry codes: (i) $x, \frac{3}{2} - y, z + \frac{1}{2}$; (ii) $x, \frac{3}{2} - y, z - \frac{1}{2}$; (iii) x, y, z - 1.]

Figure 3

The crystal packing of (I), viewed down the b axis. Dashed lines indicate hydrogen bonds.

Refinement

 $\begin{array}{ll} \mbox{Refinement on } F^2 & w = 1/[\sigma^2(F_o^2) + (0.09P)^2 \\ R[F^2 > 2\sigma(F^2)] = 0.062 & where \ P = (F_o^2 + 2F_c^2)/3 \\ S = 1.06 & (\Delta/\sigma)_{\rm max} < 0.001 \\ 3846 \ {\rm reflections} & \Delta\rho_{\rm max} = 0.98 \ {\rm e} \ {\rm \AA}^{-3} \\ 280 \ {\rm parameters} & \Delta\rho_{\rm min} = -2.01 \ {\rm e} \ {\rm \AA}^{-3} \end{array}$

Table 1

Selected geometric parameters (Å, °).

Sm1-O9	2.388 (5)	Sm1-O6	2.524 (6)
Sm1-O10	2.423 (6)	Sm1-N2	2.537 (8)
Sm1-O3	2.426 (6)	Sm1-O1	2.537 (6)
Sm1-O5 ⁱ	2.446 (6)	Sm1-N1	2.556 (7)
Sm1-O7	2.476 (6)		
O9-Sm1-O10	141.5 (2)	O5 ⁱ -Sm1-N2	128.9 (2)
O9-Sm1-O3	79.90 (19)	O7-Sm1-N2	62.3 (2)
O10-Sm1-O3	97.26 (19)	O6-Sm1-N2	62.5 (2)
$O9-Sm1-O5^{i}$	71.6 (2)	O9-Sm1-O1	141.0 (2)
$O10-Sm1-O5^{i}$	70.7 (2)	O10-Sm1-O1	71.2 (2)
$O3-Sm1-O5^{i}$	74.65 (19)	O3-Sm1-O1	124.7 (2)
O9-Sm1-O7	86.04 (18)	$O5^i - Sm1 - O1$	139.1 (2)
O10-Sm1-O7	78.56 (19)	O7-Sm1-O1	81.21 (18)
O3-Sm1-O7	151.38 (19)	O6-Sm1-O1	84.23 (19)
$O5^{i}$ -Sm1-O7	77.3 (2)	N2-Sm1-O1	65.8 (2)
O9-Sm1-O6	72.88 (19)	O9-Sm1-N1	133.5 (2)
O10-Sm1-O6	143.9 (2)	O10-Sm1-N1	73.3 (2)
O3-Sm1-O6	75.08 (19)	O3-Sm1-N1	62.4 (2)
$O5^{i}-Sm1-O6$	136.45 (19)	O5 ⁱ -Sm1-N1	118.5 (2)
O7-Sm1-O6	124.2 (2)	O7-Sm1-N1	139.4 (2)
O9-Sm1-N2	75.5 (2)	O6-Sm1-N1	72.0 (2)
O10-Sm1-N2	124.8 (2)	N2-Sm1-N1	112.5 (2)
O3-Sm1-N2	135.5 (2)	O1-Sm1-N1	62.4 (2)
05-5111-112	155.5 (2)	01-001-001	32.4 (2)

Symmetry code: (i) $x, \frac{3}{2} - y, z - \frac{1}{2}$.

Table 2Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - H \cdots A$
$O2-H2A\cdots O3^{ii}$	0.96	2.60	3.515 (9)	161
O9−H9A…O12	0.96	2.50	3.295 (8)	140
$O9-H9C\cdots O14^{iii}$	0.96	2.03	2.720(7)	127
$O10-H10A\cdots O6^{i}$	0.85	2.13	2.707 (8)	125
O10−H10C···O1	0.85	2.48	2.889 (8)	111
O10−H10C···O4 ⁱⁱ	0.85	2.01	2.720 (9)	141
$O11 - H11B \cdots O7$	0.85	2.08	2.912 (8)	164
$O12-H12A\cdots O14^{iv}$	0.85	2.39	3.004 (9)	130
O12−H12B···O3	0.85	2.52	2.945 (8)	112
O12−H12B···O13	0.85	2.07	2.775 (8)	140
O13−H13B···O4	0.85	1.87	2.642 (8)	150
$O14-H14B\cdots O8^{v}$	0.95	1.73	2.683 (8)	176
$O14-H14C\cdots O11^{v}$	0.86	2.17	2.895 (8)	142

Symmetry codes: (i) $x, \frac{3}{2} - y, z - \frac{1}{2}$; (ii) $1 - x, \frac{1}{2} + y, \frac{1}{2} - z$; (iii) $2 - x, \frac{1}{2} + y, \frac{1}{2} - z$; (iv) $x, \frac{1}{2} - y, \frac{1}{2} + z$; (v) x, y - 1, z.

O-bound H atoms were located from difference density maps (O-H = 0.85-0.96 Å) and C-bound H atoms were positioned geometrically (C–H = 0.93 Å). All H atoms were refined as riding, with isotropic displacement parameters 1.2 times the $U_{\rm eq}$ value of the parent atom. The maximum and minimum electron-density peaks are located 1.17 and 0.55 Å, respectively, from atom Sm1.

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Bruker, 2000); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

This work was supported by the Nanjing University Talent Development Foundation (grant No. 0205005122).

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.

- Benelli, C. & Gatteschi, D. (2002). Chem. Rev. 102, 2369-2387.
- Bruker (2000). SMART (Version 5.625), SAINT (Version 6.01), SHELXTL (Version 6.10) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.
- Ghosh, S. K. & Bharadwaj, P. K. (2003). Inorg. Chem. 42, 8250-8254.
- Singer, A. W. & McElvain, S. M. (1935). J. Am. Chem. Soc. 57, 1135-1137.